Desempeño de algoritmos supervisados en la predicción del rendimiento académico en estudiantes universitarios

Marleny Peralta Ascue, José Luis Merma Aroni, Oliver I. Santana Carbajal, Erbert F. Osco Mamani, Tito F. Ale Nieto

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The purpose of this study is to evaluate the performance of supervised algorithms based on data mining techniques: Decision Trees and Neural Networks, in predicting the academic performance of students in the Business Intelligence course at the School of Systems Engineering and Computer Science at the Technological University of the Andes, Abancay-Peru. The CRISP-DM methodology was used for the data mining process modeling, and the Weka software was used as a tool for training and testing the algorithms. The supervised prediction algorithms studied and analyzed include J-48 Decision Trees, Random Forest, DEPTree, and Multilayer Perceptron. The performance of the algorithms was evaluated using accuracy, precision, and sensitivity indicators. It was observed that the J-48 algorithm had the highest performance in classification and prediction, with a precision rate of 91.67%, accuracy of 64.52%, and sensitivity of 52.38%, outperforming the other studied algorithms.

Título traducido de la contribuciónPerformance of Supervised Algorithms in Predicting Academic Performance in University Students
Idioma originalEspañol
Título de la publicación alojadaCICIC 2023 - Decima Tercera Conferencia Iberoamericana de Complejidad, Informatica y Cibernetica en el contexto de the 14th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2023 - Memorias
EditoresNagib C. Callaos, Jeremy Horne, Elena Fabiola Ruiz-Ledesma, Belkis Sanchez, Andres Tremante
EditorialInternational Institute of Informatics and Systemics, IIIS
Páginas79-84
Número de páginas6
ISBN (versión digital)9781950492695
DOI
EstadoPublicada - 2023
EventoDecima Tercera Conferencia Iberoamericana de Complejidad, Informatica y Cibernetica, CICIC 2023 en el contexto de the 14th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2023 - 13th Ibero-American Conference on Complexity, Informatics and Cybernetics, CICIC 2023 in the context of the 14th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2023 - Virtual, Online
Duración: 28 mar. 202331 mar. 2023

Serie de la publicación

NombreCICIC 2023 - Decima Tercera Conferencia Iberoamericana de Complejidad, Informatica y Cibernetica en el contexto de the 14th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2023 - Memorias

Conferencia

ConferenciaDecima Tercera Conferencia Iberoamericana de Complejidad, Informatica y Cibernetica, CICIC 2023 en el contexto de the 14th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2023 - 13th Ibero-American Conference on Complexity, Informatics and Cybernetics, CICIC 2023 in the context of the 14th International Multi-Conference on Complexity, Informatics, and Cybernetics, IMCIC 2023
CiudadVirtual, Online
Período28/03/2331/03/23

Huella

Profundice en los temas de investigación de 'Desempeño de algoritmos supervisados en la predicción del rendimiento académico en estudiantes universitarios'. En conjunto forman una huella única.

Citar esto