Identificar sentimientos en cuarentena por la covid-19 mediante clasificador léxico y aprendizaje supervisado

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

The Covid-19 began to affect Peru on March 6 of 2020, preventive measures were started to prevent the spread. On March 15 compulsory social isolation began throughout Peru, the people use Twitter to exchange various information about social isolation, this is important for authorities and the public because it helps to consider strategies to avoid contagion. The present work has the objective to classify the positive and negative sentiment that were expressed on Twitter through the proposal of the Lexical Word Classifier and the use of classifying algorithms. The result obtained was that the most frequent words are: Quarantine, Covid and Home. The positive words were Good and Win, the negative word was Strange. The sentiment classification model reached 91.5% accuracy using the Support Vector Machine algorithm and the Lexicon Word Classifier.

Título traducido de la contribuciónIdentify sentiments in quarantine by covid-19 through lexical classifier and supervised learning
Idioma originalEspañol
Páginas (desde-hasta)618-631
Número de páginas14
PublicaciónRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Volumen2021
N.ºE41
EstadoPublicada - feb. 2021

Palabras clave

  • Covid-19
  • Lexical classifier
  • Quarantine
  • Sentiment analysis
  • Supervised learning

Huella

Profundice en los temas de investigación de 'Identificar sentimientos en cuarentena por la covid-19 mediante clasificador léxico y aprendizaje supervisado'. En conjunto forman una huella única.

Citar esto